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Fixed-Pitch Propeller Selection for Light Airplanes

E. V. Laitone*
University of California, Berkeley, California 94720

A numerical comparison is made between fixed-pitch propellers that either have a constant angle of attack with
varying pitch or have a constant pitch ratio that has the angle of attack increasing from tip to hub. It is shown that
the constant angle of attack is a better choice for low-speed light airplanes. New equations are derived for more
easily determining the variation in blade angles of attack when either the flight velocity or the propeller’s rotational
speed are changed from the design advance ratio. These equations are useful for selecting the best propeller pitch
ratio for a desired performance. Finally, it is shown how the propeller’s revolutions per minute can be varied to
maintain the desirable constant angle of attack over a wider speed range.

Nomenclature
¢ = % tan(¢s,4 + 6 deg) =(p/2nry) =pitch ratio for Table 1
C, =(1+6)V/ryo=aerodynamic advanceratio = C,(V/ w)

k  =Cy(V/iw/Cy(V,/0,) =[(1+8V/(1+35,)V,(0,/ v
p = 27rr0(% tan fB34) = propeller pitch

o = (B — ¢) =angle of attack (Fig. 1)

B = blade-pitchangle measured from zero lift (Fig. 1)

By = blade-pitch angle measured from flat lower surface

¢ = angle of resultant airflow = tan™'(1 + §)V/rw (Fig. 1)
x = rlry, where ry = tip radius of propeller

Subscripts

p = designadvanceratio, (V,/ryo,) =C>(V,/ ®,)/(1 + 5,)
x = rl/ry =value for any blade section

* = conditions for maximum lift-drag ratio

I. Introduction

SIMPLIFIED procedure is presented to select the pitch ratio

of a fixed-pitch propeller more easily that would have the best
performance at a desired flight velocity. von Mises! has shown that
a constantangle of attack can be attained along the blade of a fixed-
pitch propeller with blade angles measured from zero lift, only if
the pitch ratio is appropriately varied along the blade. The present
study compares the performance of a constant-pitch propeller that
has a constant angle of attack along the blade at a given flight ve-
locity, with that of the commonly used constant pitch propeller for a
typical light airplane. New relations are developed to show how the
blade angles of a fixed-pitch propeller can be selected to minimize
the angle-of-attack variations along the blade when the flight ve-
locity V changes. Explicitequations show how the commonly used
constant-pitch ratio produces an increasing blade angle of attack
as y =r/ry decreases, until a maximum is attained at y < % This
amax increases and moves nearer to the propeller hub when either
the flight velocity is decreased or the rotational speed is increased;
however, as the flight velocity approaches zero, o can become so
large that it results in an unnecessarily low takeoff thrust. On the
otherhand, the constant a propellerhas a more rapid thrustdecrease
as the flight velocity is increased. In any case the usual procedure is
to select a blade angle 8 at x =% as B34 =¢34 + /4, Where ¢ is
the angle between the resultant forward velocity (1 + 6)V and the
rotational velocity %row(l — d), as shown in Fig. 1. The angle of
attack (or incidence) of az/4 = 6 deg s selectedto give the maximum
lift-drag (L/D) ratio for nearly all propeller blade profiles when o34
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measured from the profiles zero-lift reference line. For example the
Clark-Y (12%) aspect ratio 6 wing (Ref. 1, p. 160) has maximum
L/D at a =5.3 deg measured from zero lift, which corresponds to
0.3 degrelative to the flat bottom, the reference line commonly used
(Fig. 1).

The angle ¢ between the plane of rotation and the resultant ve-
locity is given at any y =r/ry by

(1+8V  C(Vie) (1+5V
xroo(1-8) g

o))

tan¢g, =
XTow

where C, is assumed to be a constant along the blade (0 < ¥y <1)
for a fixed flight velocity V' at the given rotational speed (w =
27 rpm/60), which is based on the usual assumption that the in-
duced inflow velocity v; =8V is approximately uniform into the
propellerdisc. However in the calculations presented in Table 1 the
induced rotational velocity is taken as § =0 because it is not as
uniform, but fortunately is much smaller (Ref. 1, p. 348, 8 < 6/10).
A first approximation for 8 can be obtained from simple momen-
tum theory (Ref. 2, p. 188, or Ref. 3, p. 345) where the thrust T,
assumed uniform over the propellerdisc area A =7rZ, corresponds
to the inflow ratio 6 =v;/ V given by

where

& +6=T/4qA q =10V?

s=1[-1+ 1+ (T/qh)] =~ L(Tiq4)
- (T/1qA) + 5(T1qA)’ + ---

Several textbooks and published reports have used the first term
to approximate 6= (7/4q A); however, this is not satisfactory for
6>0.1. It is always better to use the exact solution because the
series expansionis divergentfor (7/qA) > 1.

Solies* has shown how difficult it is to calculate the propeller
thrust and inflow in the general case. Fortunately, a lower
limit for & is easily obtained for light airplanes by noting that
T =CpgqS + Wsin 0, while Wcos0@ =L =C;qS~ W for steady
flight, either level or at the small climb angles of 8 of most light
airplanes. In this case a satisfactory lower limit for §is given by

525[—1 +/1+ (Cpsl nrg)] @)

More important than any variation in J is the determination of the
blade angle § that would producea constantangle of attack ¢, along
most of the propeller blade at the cruising speed of a light airplane
with a fixed-pitch propeller. o, designatesthe airfoil profile angle of
attack that produces its maximum L/D ratio. The simplest relation
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Table1 Values of C; and ¢34 for selected flight speeds V, and ry = 0.914m (31 ft)

V,, m/s (CL/Cp)  8,Eq.(2) Ca(Vy/wp)*  ¢3abdeg  CfF (! )" $3/4.° deg (! )"

Vmp(29.0) (1.24/0.12) 0.140 0.1280 9.69 0.2106  (14.1 deg/0.16) 14.36 (10.6 deg/0.23)
V,(38.2) (0.714/0.06) 0.074 0.1587 11.95 0.2430  (12.1 deg/0.20) 17.61 (9.1 deg/0.28)
Ve (56.0) (0.332/0.037) 0.046 0.2266 16.81 0.3155 (9.4 deg/0.27) 24.38 (7.4 deg/0.39)
Vi (69.5) (0.216/0.033) 0.042 0.2802 20.49 0.3737 (8.2 deg/0.32) 29.27 (6.7 deg/0.47)

1 (Vplwp) =(1+ 8,)Vyl rowp; @p =(2700/60)27. ° ¢34 =tan™'(C2/0.75). °Equation (3), B34 =¢3/4 + 6 deg. “Equation (5).
*tan™!(1.5C2/0.75); @, =(1800/60)27.

xr,® (1-0") = xr,®

Fig. 1 Tan ¢ = (1 + 6)V/xrow = Ca/x. When B« = ¢~ tan1(Cy/x),
then a = ax. When — oy (L = 0) = o, then 8« = 3¢ = ¢, and o = 0.

for 8 is given by the constant-pitchratio defined by the pitch p and
the blade-tip radius r as

pl2nry =y tanfB, =const =C,

where y =r/ry <1. However, when 8 is measured from the zero-
lift referenceline (Fig. 1), then 8, =(¢, + o) =tan"!(C,/x). Be-
cause both B and ¢ vary similarly with yx, a, is approximately con-
stant (5 deg < a. < 6 deg) for most useful airfoils; therefore, as will
be shown by Egs. (3) and (4), o, =(B, — ¢,) increases from the
propeller tip (xy =1) to a maximum o, at x, near the propeller
hub. To reduce this increase in a, as y decreases, the highly cam-
bered flat bottom Clark-Y and RAF-6 profiles were developed so
that (see Fig. 1) |a;(L =0)| =5 deg~ a,. Then when a; =0 and
By measured from the flat lower surface,

Br =9, B =(B; +5deg)
a=(-¢) =la;(L =0) =5deg~ a
pl2nry =y tan By, =y tang, =C,

This could be the ideal solution if all of the propeller sections had
a 12% thick Clark-Y profile having |a;(L =0)| =5 deg= a
5.3 deg; unfortunately structural demands require that blade thick-
ness decreases from hub to tip. Although a, is relatively unaf-
fected by thickness, (5 deg <o < 6 deg) for most useful profiles,
los (L =0)| decreases with thickness ratio |a;(L =0)| = 44(t/¢).
For example, a 6% Clark-Y airfoil has |a;(L =0)| = 3deg<
o, ~ 5 deg. Therefore, the presentdiscussionindicates how the pitch
ratio must be modified to reduce this increasein a,, as y decreases.

II. Fixed-Pitch Propeller with Constant Pitch
A constant geometric pitch p is defined for y =r/ry,

pl2nry =(x tanB,) =C; =<% tan,[%) 3)

The wusual notation rated pitch is for x =% so that p =
27rr0(% tan fB3/4) is marked on the propellerhub, along with the pro-
peller diameter (2r,). When the blade angles 8 are measured from
the zero-lift reference line (Fig. 1, a =0) and Eq. (3) is defined by
Bass =¢34 + 0574, then the blade angles of attack «, will not be

constant along the blade, as shown by von Mises' (p. 292). The
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Fig. 2 Variation of A a(kV,) with ) =r/ry. From Eqs. (8) and (10) and

a(V,) from Eq. (4) with V, = 125 mph (59 m/s), C,(V,) = 0.2266, and
Cl =0.3155 for 6344 = ¢3<14 +6 deg.

variation of the angle of attack along the blade 0.15 < y =r/ry <1
is given by (see Fig. 1 and dotted line in Fig. 2)
1 (x(cl - cg)
4)

'— —tan™! — =t

o, = - =tan_
=By — ¢ an 2+ C G,

Consequently o, increasesas y decreasesto y,, <y <1 so that the
maximum a, is
1
oy = tan_l[(cl - CZ)/ZXm]a Am = (Cl CZ)E (5)
For x <y, o, decreases to zero because tana, — x(1/C, —
1/Ci{)— 0as y — 0.
The numerical valuesin Table 1 were calculatedfor a typical light
airplane, similar to a Piper PA-22 or a Cessna 170. The drag polar
approximation was given by

Cp =Cp, + 2l nAe =003+ 2l 17

1
Cp. =(mAeCp,)? =0.714, Cp, =2C,p, =0.06

Crny =33C,. =124, Cppy =2Cp, =0.12

The velocity V, for the maximum L/D ratio, and V,,, for the min-
imum power required for steady level flight, were then calculated

by
V =QW/pSC,)3, W =907kg (20001b)
S =13.9m?(1501t?), p = 1.225kg/m* (0.0023771b s/ft*)

The constant C, =(1 + 8)V/(rym) was calculated for ry =0.914 m
(3ft)and @ =907 (2700 rpm). For @ =607 (1800 rpm) the constant
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C, in Table 1 was simply increased by a factor of 1.5. The constant
C, =% tan(¢s,4 + 6 deg) in Table 1 was calculated for o34 =6 deg,
measured from the zero-lift reference line to be compared with the
calculations given by von Mises.!

The cruise speed V. in Table 1 was selected as the advertised
125 mph (56 m/s) cruise speed of the Piper PA-22. The maximum
speed V), could only be attained with a variable pitch propeller, but
is given to show how the maximum ¢, decreases with increasing
speed. At lower speeds the increasein angle of attack as y decreases
can become too large when o,, =6 deg is measured from the zero-
lift reference line. For example, at Vy,, =29 m/s, a,, =14.1 deg at
Xm =0.164, whereas at V¢ (56 m/s), o, has decreased to 9.43 deg
and moved outward to y,, =0.267 so that the blade angle of attack
has decreased to 8.07 deg at the propellerhub (¥ =0.15).

The excessive increase in o can be easily avoided by measuring
B from a reference line below that for zero lift, as indicated in
Fig. 1. For example, the 12% Clark-Y has a flat lower surface so
blade angles (8, ) measured from its bottom surface can be defined
as By, =(By, —5 deg) (see Ref. 1, p. 160), while a, = 5.3 deg;
therefore, B34 =(¢3/4 + 0.3 deg) would correspond to the blade
profile’s maximum ratio of L/D. The best procedure is to neglect
the 0.3 deg and use B, =¢, and C, =% tan(¢;,4) =y tan¢, fora
redefined constant pitch given by

p =2rnry(ytang,) =2nr Cy(V,/ @w,) =2mroy (tanfy,)

Consequently for the Clark-Y profile shown in von Mises! (p. 160),
a, =(ay, +5deg),and C, /Cp, ~22for —2deg< oy, < 3deg
or (3 deg < a, < 8 deg). The aerodynamicangle of attack (5 deg) is
constant along the blade portion that has the Clark-Y profile at the
design advanceratio given by C»(V,/®,) =p/2mry, when a; =0.
Unfortunately the 5-deg zero-lift angle decreases as the 12% thick-
ness decreases, becoming only 3 deg for 6% thickness so that o
would decrease at the thinner outboard sections unless By, was
increased by a; , (see Fig. 1), where 0 <o, <2 deg.

III. Fixed-Pitch Propeller with Constant «

As noted by von Mises,' a fixed-pitch propeller that has 3, for
the constant pitch defined by Eq. (3) with 8, > ¢, cannot have
a constant angle of attack. This is clearly shown by Eq. (4) be-
cause a varies with y =r/ry, whenever C; > C,. However, when
C(V,lw,) =Cy(Vy/ axy), then o, =0, and (p/27ry) =(Vo/ roay),
with 6 =0 =o when 8, and o, are measured from the zero-lift
reference line. The fixed-blade angles necessary for a constant
o, =a, (the maximum L/D ratio for the blade profile) are given
by C, = tan a, so that

Cc,+C
ﬂx =a. t+ ¢x =tan"! C, + tan_l(CZ/x) =tan~! —Z/X
I_C*Czlx

C*Cz <X =(r/r0)51

C,+Cly
(py/27rg) = xtanPB, =y m (6)

Consequently the varying pitch (p, ) decreases with x until a mini-
mum is attained at x,, which is evaluated by (dp,/dy) =0 as

1
% =c*c2[1 +(1+ C;Z)Z] =1.11C, for (C, =tan6 deg)

This variation of p, is confirmed by von Mises! (Fig. 220, p. 292)
if J/m is replaced by C, with 6 =0, which is adequate for higher
velocities and lower Cp than those presented in Table 1. Note that
the o values given by Eq. (2) are only lower limit estimates.

The variationin p, decreasesas the referenceline for 8 is moved
downward below the zero-liftline. A constant pitch p =27r,C, is

attained when the blade pitch angle B., =¢,, as shown in Fig. 1.
Then with o, =0, =constant,

ﬂ*ﬂx zﬂx — O =¢x =taﬂ_l(cz/x)
ﬂx zﬂ»ﬁ,x +a, =o,+ ¢x (7)

This agrees with Eq. (6), except that the measured pitch is now con-
stant because p/2nry =y tan ¢, =C,. The constant o, =a, could
be produced from the propeller hub (y =0.15) toits tip (x =1) as
long as the advance ratio C>(V,/ ®,) =constant. Any change in V
or o will vary o, along with the blade, as shown by

a,(Vie) — o, =¢,(V,/w,) —¢,(V/o) — tan™! C(Vy/ wp)

— tan

.1 C(V/iw) - 2[Cy(V,/0,) = C,(V/w)]
- 2%+ Cy(V,l0,)Co(V/w)

Obviously, o, decreasesas either V increasesor o decreasesand re-
mains constant(a,) only if the advanceratio, defined by C»(V,/ ,),
remains constant.

The maximum change in [a,(V/0) —a.] =Aq,, given by
(dAaldy) =0,is

an_l Cz(Vp/wp) - Cz(V/O))
2m

Substituting k =C5(V/@)/ C2(V,/ @,) into Eq. (9) simplifies it to

I = VKCy(V,/ @,)
(10)

The values for A a(k V) shown in Fig. 2 were calculatedby Egs. (8)
and (10) for velocity changes from an initial advance ratio given in
Table 1 by C,(V/ wc) =0.2266, correspondingto Ve =56 m/s and
oc =90 7(2700 rpm) so that k =(1 + 6)V/58.6 m/s. The effect of
any changes in rpm can be calculated by simply changing the value
of C, by the ratio (2700/rpm). Figure 2 shows how quickly the blade
angles of attack can be increased by a decrease in velocity. For ex-
ample, the decrease in velocity from Ve =56 m/s to Vi, =29 m/s
(kmp =0.565) produces Acp, =12 deg so that oy 4(V) has in-
creased from o =6 deg to 0 4(Vyp) =18 deg. This would corre-
spond to a decrease in the L/ D ratio of a typical Clark-Y profile
by more than 50%. On the other hand, an increase in velocity to
V., =69.5m/s (k,, =1.24) producesa, (V,,) = 0for0.2 <y <0.35,
when the initial o, (V) =6 deg. This shows why a variable-pitch
propeller is necessary for both a desirable speed range and a rea-
sonable takeoff distance.

However the best compromise for a constant-pitch propeller for
a light airplane has a blade profile that has a flat lower surface and
a large camber. The flat bottom is suitable for verifying the blade-
pitch angles with a propeller-protractor, and the high camber can
lead to —as(L =0)= a, =~ 5 deg, where the angle a; is measured
from the flat bottom [see Fig. 1 (a =a; + 5 deg)]. Both the Clark-Y
and the RAF-6 profiles are near to this ideal condition. For example,
a 12% Clark-Y profile (Ref. 1, p. 160) has o =5 deg~ a. =5.3 deg
when a; =0. Consequently the optimum a, = 5 deg is closely ap-
proximated by

B, = ¢, +5deg =By, + 5deg,

Ao, (kV,) =tan™'[(1 = k)/2 k],

o, =0y, + 5deg

By =¢, =tan™'(Cy/y),

This is the ideal solution if the blade thickness remained 12%;
however, structural requirements need a decrease in thickness from
hub to tip. Consequently the outboard profiles must increase S, to
compensate for the decrease in —a (L =0).

pl2nry =C, =y tang, (11)
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IV. Discussion

The A afromEgs. (8) and (10) and Fig. 2 canalsobe appliedto the
constant-pitch propeller defined by Eq. (3) with B34 =¢34 + o34
because

Aax(kVC) :¢x(VC) - ¢x(kVC)
ax(kVC) zﬂx(VC) - ¢x(kVC) :ax(VC) + Aax(kVC)

The variationof o, (Vo) =B, (Vc) — ¢, (Vc) is shown by the dotted
line in Fig. 2 for C,(V¢) =0.3155 from Table 1 for az4 =6 deg at
2700 rpm. Now the angle of attack oy, (kV() is increasingly greater
fory < % as the velocity decreases; however, an increasein velocity
(k > 1) decreases a, (kV¢) so as to make it more nearly constant.
Unfortunatelyit does notbecome constantuntil o, (ko V) =0, when

By(Ve) = ¢, (ko Vo), Ci(Ve) =CakoVe) =koVelromy

because oo =0 =&. Equation (9) gives the maximum value of
o, (kVc) only when o, (Vc) is constant. When it varies, then
o, (kVc) is given by Eq. (5) at a larger value of x,,.

So far all calculations (except those in Table 1 for @ =607 =
1800 rpm) have been based on 2700 rpm. Now it will be shown how
a variation in rpm while changing velocity can extend the range of
constant angle of attack for any fixed-pitch propeller. For example,
the increase in A o shown in Fig. 2 for k =0.9 can be eliminated by
decreasing the rpm from 2700 to 2430 rpm because 6 < 0.05 can be
considered constant:

Cy(Veloc) =Cy(kVel koe) =0.2266, Aa, =0
However the decrease in Ao for k =1.1 cannot be eliminated
by increasing the rpm, which must be limited to 2700 rpm
for continuous operation so that the pitch ratio for the con-
stant a( V) =, propeller, p/2rxry =Cr(Ve/ oc) =0.2266, must
be increased. To assist the average light plane owner, se-
lect the appropriate propeller pitch and consider the applica-
tion to a desired cruise speed Ve =125 mph to be compatible
with V,, =135 mph. Then V,,/ Vo =1.08 =2700 rpm/2500 rpm,
and o(Ve) =a(1.08V¢) =a, for maximum blade L/D ratio if
oc =(907/1.08) =2500 rpm, so that

C,(125/2500) = C,(135/2700) = 1.08(0.2266) = 0.2447
p =21ryC5(125/2500) =55.36in. = 72in. 7(0.2447)

By: =¢1 =tan"'(0.2447/0.75) = 18.07deg

From Table 1 note that originally ¢5,4 =16.81 deg for Cy(Vc/
oc) =0.2266 =C,(125 mph/2700 rpm) so that originally p =
72in. £(0.2266) =51.261in. =(55.361in./1.08). The change in S is
negligible for this relatively small velocity increase from 125 mph
(56 m/s). The older U.S. light airplanes in operation today record
their air speed in miles per hour, but the more recent ones are oper-
ating in knots. Table 1 is based on meters per second (m/s) as given
by

(m/s) = (ft/s) x 0.3048 = (mph) X 0.44704 = (kn) X 0.51444

= (km/hr) + 3.6

The lower limit for &, as given by Eq. (2), is 6<0.1 for
(CDS/nrg) < 0.44. For Table 1 this corresponds to V >33 m/s
(73.8 mph). However for lower velocities the estimation of & be-
comes difficult, as shown by Solies* who calculated 6 =0.57 at
50 kn (25.7 m/s) for a propeller with 2.08 m (6.83-ft) diameter de-
veloping 508 kg (1120 1b) of thrust at 2700 rpm. Consequently the
estimates for 6 in Table 1 when V < 33 m/s could be in the range
given by

(T/4qA) — (T/4qA)* < 6< %

The & values in Table 1 were calculated by Eq. (2), which is not
applicable for lower velocities because (1/gA) > (CpS/qA).

To estimate the range of the blade angle B 3,4 that would corre-
spond to the estimated range of 6, consider the lowest velocity in
Table 1:

Vinp =29 m/s, 6=0.14 [fromEq. (2) with Cp =0.12]

C, =0.128, ¢% =tan"'(0.128/0.75) =9.7 deg

The method of Solies* gives 6 =0.37 (a 264% increase) so that
1.14 < (1 + 8) <(1.37) and k <(1.37/1.14) =1.20. Then with the
Clark-Y profile (Ref. 1, p. 160), |a;(L =0)| =5deg~ o, and
a, (kCy) =5 deg when oy =0 and ¢(kC,) =B in Fig. 1. If § =
0.14, then o, (0.128) =5 deg when By 3/4 =¢3/4(0.128) =9.7 deg;
however, if 6=0.37 and k =1.2, then o,(0.154) =5 deg if
Braa =¢34(0.154) =tan~'(0.154/0.75) =11.6 deg. In this case
the fixed-pitch propeller for climb at V,,, =29 m/s can be defined
by

0.128 < (C, = p/2xry) < 1.2(0.128) =0.154

9.7deg < (,Bﬁ% =¢%) < 11.6deg

In many cases the actual profile used has
los(L =0)| = 4deg, a, < 6deg
So the usual procedure is to define the blade angle by

,Bf% =¢%(C2) + o3 with a;

3= 2deg

In this case a, (C,) cannot be constant if the pitch is defined by
Eq. (3), as shown by Eqgs. (4) and (6), because «, can be constant
only when ¢ (C5) coincides with the reference line used to define
the blade angle (e.g., Fig. 1, ¢ =B, for a, =const). When B, is
measured from the flat lower surface (ay =0), then o, (kC5) is
constant for kC, > C, so that

$3(kCy) =B, 3 =¢3(Cy) +2deg
k =tan ¢ (kC,)/ tan ¢ (C,)
akCy) =By, + lag(L =0)| = ¢, (kCy) =lay(L =0)| (12)

The variation of a(C) is given by Eq. (8) as

k—1C

~Aa, (k) =, (kCy) — 9,(Cy) =tan—1[’fx(Tk)C;} (13)
Fork < 1 o, (C,) increasesas y decreasesto y,, defined by Eq. (10)
for maximum o, .

The precedingcalculationsfor V,,, =29 m/s gave C;, =0.128 and
(]5';/4(0128) =9.7 deg Then ¢3/4(kC2) =(97 deg +2 deg) Zﬂf$3/4
so that k =(tan11.7deg/ tan9.7deg) =1.212; consequently if
los(L =0)| =4 deg, then Eq. (13) gives the following a, (0.128)
values:

oy =5.5deg, a3 =6deg =a.

3
7
o, =9.5 deg(x, =0.141)

Although o, (0.128) is not constant, it may be useful because it be-
comes more uniform as C, increases to kC, =1.212(0.128) when
a,(0.155) =|as(L =0)| =4 deg. This constant a, occurs at a ve-
locity that is more than 21% greater than the original velocity
(29 m/s), as given by

V =1.212[1.14/(1 + 8)](rpm/2700)(29) > 35m/s

because S decreases and rpm increases, as V increases.

The & values used have a large effect on 8, but a very small
effect on the variation of o, (C,), as can be shown by replacing
the lower limit 6 =0.14 and C, =0.128 by the upper limit
6 =0.37 and C, =0.154, corresponding to ¢3,4(0.154) =11.6 deg
so that for this application B34 =¢34 +2deg =13.6 deg and
k =(tan13.6 deg)/(tan 11.6 deg) =1.179. This value of k less than
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3% lower than k =1.212 for 6 =0.14. As expected, Eq. (13)
gives og,4 =6 deg in both cases, but k =1.179(C, =0.154)
gives o, =8.7deg(x,, =0.167), which is only 0.8 deg less than
o, =9.5deg(x, =0.141) for 6§ =0.14. Consequently, the main ef-
fect of 0.14 < < 0.37 is the 1.9 deg increase in 43,4 from 9.7 to
11.6 deg in order to match the increase in the inflow velocity (6V) at
V =29 m/s, with constanto, =4 degoccuringat V = 354 m/s. The
bestadjustmentfor the estimated variationsin either Sor [oe; (L =0)|
is to use 1.2C, rather than B34 =¢34 +2 deg for this partic-
ular case. Although a, can increase to 6 deg for other profiles,
las (L =0)| can be reduced to 3 deg by thinner Clark-Y profiles
having approximately 6% thickness, as indicated by McCormick?
(p. 356). In this case o, is not constantif the constant pitch is based
on f; =¢, because o34 =34 + 5deg — ¢34 and at the propeller
tip(x =1), &y =B + 3 deg — ¢,. Consequently the outboard pro-
files must have their blade angles 4, increased with respectto ¢,
so By, =¢, + ay,, as shown in Fig. 1, with a;; =2 deg, to have
o, = 5 deg. To accommodate the thinner profiles, most variable-
pitch propellers refer to the blade angles as 8 from zero lift (see
Fig. 1) so that as the blades are rotated to increase f3 for faster flight
speeds, the resulting &, are approximately constant (von Mises,!
Fig. 221, p. 293).

A constant a, =a, for the maximum L/D ratio is an obvious
goal because it maximizes the thrust-to-torqueratio. Unfortunately
the bending and tension stresses produced in flight require such
a thickening of the inboard blade profiles that their L/D ratios are
greatly reduced. In addition, during the takeoffrun ¢ is so small that
a= f8 =f; + |a,;(L =0)| produces blade stall with further reduc-
tion in the L/D ratio for y < % Consequently most commercially
produced fixed-pitch propellers gradually reduce the constant pitch
for y < 0.7. Some variable-pitch propellers have constant pitch for
% > 0.35. For example, McCormick® (Fig. 6.11,p. 355) shows pitch
p variation with y for a 10-ft diameter, three-blade propeller with
Clark-Y profiles, and (p/2nry) =% tan 15deg =0.201 for 0.35 <
x <1. Thisisreduced 36% to (p/2nry) =0.148 at y =0.2, where
Boo =tan~1(0.148/0.2) =36.5 deg, which is 8.6 deg less than
Boo =tan"'(0.201/0.2) =45.1 deg for the original constant pitch.
The majority of the replacement propellers for U.S. light airplanes
are manufacturedby the McCauley Industrial Corp., Vandalia, Ohio.
They provide fixed-pitch metal propellers that have their diameter
(2ry) and pitch (p =27ry X0.75 X tan f7,3/4) stamped on their hub
in inches (0.0254 m =1 in.). Suitable for the light airplane defined
by Table 1, they produce 72-in. diameter propellers with fixed-pitch
ranging from 46 to 58 in. at 2-in. intervals. Each 2-in. increase in
pitch increases ABy3/4= 0.6 deg. This corresponds to an increase
of AV, =5 mph. The design V,, for the best cruise speeds could then
be approximately 110 mph for p =461in., 125 mph for p =521in.,or
140 mph for p =58 in. These McCauley propellershave slightly in-
creasing pitch for y > %, and then a rapidly decreasing pitch toward
the hub so thatat y =§ the blade angles S (see Fig. 1) are 5-7 deg
less than the correspondingvalues givenby y tan By, =% tan By 3/4.
Then near the hub (yx 5%)[3 7 is kept constant, whereas the calcu-
lated values givenby B, = tan™!(ps4in./27r in.) rapidly increase
because By — 90deg as r in. — 0. This decreasein By, for y < %
was developedby McCauley’s engineers to increase the static thrust
and alleviate the high angle-of-attackairfoil profile stall that occurs
as V decreases. As shown by Eq. (8) and Fig. 2, any decrease in ve-
locity produces an undesirable increase in o, for the inboard blade
profiles (0.2 < x < 0.6).

If the propeller selectionis based on a design V,, =125 mph, then
the inflow velocity can be neglected (6 < 0.046). However 6 should
be considered for the low-speed ultralight airplane, and especially
for the man-poweredaircraft. For the latter caseitis betterto evaluate
both the axial and radial inflow and evaluate 8, from the zero-lift
reference. For a first approximation Eq. (6) would indicate how the
pitch would vary to produce o, = a.. However these calculations
would be too expensive for the home-built airplane designer so that
their simplest procedure would be to estimate the axial inflow by
(CpSlar rg) <6< %, and then use the constant pitch defined by

pl2rr =%tan[3ﬁ% =y tanf;,, ﬂﬁg =¢% + Aaﬁ% (14)

where B is measured from the flat lower surface of a typical Clark-
Y airfoil. For example, Aay 34 =2 deg would produce o, = a, for
x > 0.6 if the Clark-Y thickness ratio was 10% at y =% and 6%
at ¥ =1.In addition Aay,3/4 =2 deg would reduce the undesirable
increasein a,,, which is shown in Fig. 2 for 5,4 =¢3,4 + 6 deg. The
amateur propeller builders should refrain from reducing the pitch
for ¥ < 0.6 because they would lose the simplicity of graphically
determining the blade angles by drawing the straight line given by
tan B, =(p/2nry)/ x. The McCauley fixed-pitch propellers de-
creased the pitch following many tests to increase the thrust as the
velocity decreases. As a result, they provide a table with each pro-
peller that gives the blade angle (8,,) every 3 in. from hub to
propeller tip (ry in.). Another objective in the McCauley propeller
tests was to increase the static thrust, which is important for the
takeoff run. If the propeller pitch is selected too large in the hope of
achieving a higher V,,,, then o, during the takeoff run may be so
large that the propellers L/ D ratiois too small to achieve a relatively
finite takeoff distance!

V. Conclusions

The design goal for either a fixed-pitch or a controllable-pitch
propeller is to have most of the blade for y > i at each profiles
angle of attack o =a, for its maximum L/D ratio. This could be
achieved for the designadvanceratio C,(V,/ w,) by using Eq. (6) to
determine the blade angles 8, (measured from the zero liftline). The
required pitch (p,, ) decreases from y =1to x, = 1.11C, (V,/ w,),
and then increasesrapidly; therefore, p, =p, for x < x, is the best
choice since the required blade thickness had greatly reduced the
L/D ratio. Then the decrease in ¢, that would decrease thrustas V
increases, and the increase in «, that could decrease the L/D ratio
of the profiles when a,, — B, as V decreases, must be checked for
the expected Vyax and the thrust required for the take-off run. The
changein o, producedby any changein V or o, for any fixed 8, and
its correspondinga, at the design C»(V,,/ w,), is given by Eqs. (10)
and (13), for C,(kV,/ w,), wherek =(V w,/ V,0)[(1+8)/(1+5,)];
the change in S can usually be neglected if V > 40 m/s.

However, the best propeller for light airplanes uses airfoil pro-
files that have a flat lower surface, such as the Clark-Y airfoil. The
flat bottom provides an excellent surface for a propeller protractor
to check the blade angle B;, thereby eliminating the difficulty of
measuring 8 from the zero lift reference line (Fig. 1). In addition,
the 12% Clark-Y profile’s camber was designed so that a; =0 in
Fig. 1, gave

_af(LZO) =5degz Cly, ﬂf=¢
a =+ |(L =0)] =5 (15)

Now f;, is defined by Eq. (11) as tan 8, =(C,/x), consequently
By, is easily calculated, or measured by the angle formed by a
straight line graph given by r/ry vs C, =constant. For a low-
speed ultralight airplane this would be the ideal solution, with
(t/c) =0.12 for y > i; however, structural demands for heavier
aircraft require a continual decrease in (t/c) for y > i. Because
los(L =0)|= 44(t/c) decreases, while o, =5, is approximately
constant, the usual remedy is to increase 3,4, as in Eq. (14) with
Aaygys =(Braa — $314) =034 (in Fig. 1).

For example, Table 1 gives C,(V./w.) =0.2266 and ¢;/, =
16.814,, when V. =56 m/s (125 mph). Then Aas 34 =1.64; and
Eq. (14) give,

x tan B, =3 tan Br.a =2 tan(16.81 + 1.6) =0.2496
as, =Bs, — ¢, =tan"'(0.2496/y) —tan"'(0.2266/ )
731 =1-25dega a3

Al

=2.154¢, o,

Consequently for y, > i, —ay(L =0) = 34, would produce o, =
Saeg =® 0. However a much simpler method is indicated by Fig. 2
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where Aoz, =1.64., for C; =0.2266 and k =0.9 from Eq. (13).
Consequentlyif B, is evaluatedat a higher velocity givenby 1.1 V.
with o. constant, then Eq. (13) gives the increase in Aa;, when
Bty (1.1V./ @) operates at the original (V,./ @) with k =(1.1)""
and C,(1.1V./w,) =1.1 (0.2266) =0.2493 therefore,

affx(vf/wf):tan_l(w) with k=(L)

%2 + k(0.2493)2 1.1
(78] =1-23dega aﬁ,% =1-57deg
a4 =212, a4 =273

The fixed blade angles are given by,
Br, =¢,(1.1V./ @) =tan~'(0.2493/x)
affl(l'lvc/wc) =O (16)

Therefore either method is satisfactory, but Eq. (13) with k =1.1-
1.2 is the simplest method for determining the B, =¢,(kV./ @)
so that oy, (kV./®.) =0 and at the design cruise speed (56 m/s)
o, (V./ o.) = a,.Consequentlyin a steady shallowdive where V has

increased more than, o, so that (V/w) =k(V,/®.), the interesting
experimental situation can occur where,

asy(kV.l o) =0, a, (kV /o) =los, (L =0)| = 44(t/c),

amn

The required increase in blade setting for the maximum veloc-
ity (V) of a controllable-pitch propeller is also best determined
by Eq. (13) because it gives Aa,(Vy/wy) for any change in
k =(Va,/V,o)foranygivenB,(V,/ ®,), measured from any fixed
reference line (Fig. 1) because

S xk=1)C
—Ao, (kCy) =¢,(kCy) — ¢,(C,) =tan I(XXchgz) (18)
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