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Fixed-Pitch Propeller Selection for Light Airplanes

E. V. Laitone¤

University of California, Berkeley, California 94720

A numerical comparison is made between � xed-pitch propellers that either have a constant angle of attack with
varying pitch or have a constant pitch ratio that has the angle of attack increasing from tip to hub. It is shown that
the constant angle of attack is a better choice for low-speed light airplanes. New equations are derived for more
easily determining the variation in blade angles of attack when either the � ight velocity or the propeller’s rotational
speed are changed from the design advance ratio. These equations are useful for selecting the best propeller pitch
ratio for a desired performance. Finally, it is shown how the propeller’s revolutions per minute can be varied to
maintain the desirable constant angle of attack over a wider speed range.

Nomenclature
C1 = 3

4
tan( u 3/4 + 6 deg) = ( p / 2p r0) = pitch ratio for Table 1

C2 = (1 + d )V / r0 x =aerodynamic advance ratio = C2(V / x )
k = C2(V / x ) / C2(Vp / x p) =[(1 + d )V / (1 + d p)Vp]( x p / x )
p = 2 p r0( 3

4 tan b 3/ 4) = propeller pitch
a = ( b ¡ u ) =angle of attack (Fig. 1)
b = blade-pitch angle measured from zero lift (Fig. 1)
b f = blade-pitch angle measured from � at lower surface
u = angle of resultant air� ow = tan ¡ 1(1 + d )V / r x (Fig. 1)
v = r / r0 , where r0 = tip radius of propeller

Subscripts

p = design advance ratio, (Vp / r0 x p) =C2(Vp / x p) / (1 + d p)
v = r / r0 =value for any blade section
¤ = conditions for maximum lift-drag ratio

I. Introduction

A SIMPLIFIED procedure is presented to select the pitch ratio
of a � xed-pitch propeller more easily that would have the best

performance at a desired � ight velocity. von Mises1 has shown that
a constant angle of attack can be attainedalong the blade of a � xed-
pitch propeller with blade angles measured from zero lift, only if
the pitch ratio is appropriately varied along the blade. The present
study compares the performance of a constant-pitch propeller that
has a constant angle of attack along the blade at a given � ight ve-
locity, with that of the commonly used constantpitch propeller for a
typical light airplane.New relations are developed to show how the
blade angles of a � xed-pitch propeller can be selected to minimize
the angle-of-attack variations along the blade when the � ight ve-
locity V changes. Explicit equations show how the commonly used
constant-pitch ratio produces an increasing blade angle of attack
as v =r / r0 decreases, until a maximum is attained at v < 1

2 . This
a max increases and moves nearer to the propeller hub when either
the � ight velocity is decreased or the rotational speed is increased;
however, as the � ight velocity approaches zero, a can become so
large that it results in an unnecessarily low takeoff thrust. On the
other hand, the constant a propellerhas a more rapid thrust decrease
as the � ight velocity is increased. In any case the usual procedure is
to select a blade angle b at v = 3

4 as b 3/ 4 = u 3/4 + a 3/ 4 , where u is
the angle between the resultant forward velocity (1 + d )V and the
rotational velocity 3

4
r0 x (1 ¡ d 0 ), as shown in Fig. 1. The angle of

attack (or incidence)of a 3/4 ¼ 6 deg is selectedto give the maximum
lift-drag (L/D) ratio for nearly all propellerblade pro� les when a 3/ 4
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measured from the pro� les zero-lift reference line. For example the
Clark-Y (12%) aspect ratio 6 wing (Ref. 1, p. 160) has maximum
L/D at a =5.3 deg measured from zero lift, which corresponds to
0.3 deg relative to the � at bottom, the reference line commonly used
(Fig. 1).

The angle u between the plane of rotation and the resultant ve-
locity is given at any v =r / r0 by

tan u v =
(1 + d )V

v r0 x (1 ¡ d 0 )
=

C2(V / x )
v

¼
(1 + d )V

v r0 x
(1)

where C2 is assumed to be a constant along the blade (0 < v ·1)
for a � xed � ight velocity V at the given rotational speed ( x =
2 p rpm/60), which is based on the usual assumption that the in-
duced in� ow velocity vi = d V is approximately uniform into the
propeller disc. However in the calculations presented in Table 1 the
induced rotational velocity is taken as d 0 =0 because it is not as
uniform, but fortunately is much smaller (Ref. 1, p. 348, d 0 < d /10).
A � rst approximation for d can be obtained from simple momen-
tum theory (Ref. 2, p. 188, or Ref. 3, p. 345) where the thrust T ,
assumed uniform over the propellerdisc area A = p r 2

0 , corresponds
to the in� ow ratio d =vi / V given by

d 2 + d = T / 4q A where q = 1
2 %V 2

d = 1
2

£
¡ 1 +

p
1 + (T /q A)

¤
¼ 1

4 (T /q A)

¡ 1
16

(T /q A)2 + 1
32

(T /q A)3 + ¢ ¢ ¢

Several textbooks and published reports have used the � rst term
to approximate d ¼ (T / 4q A); however, this is not satisfactory for
d > 0.1. It is always better to use the exact solution because the
series expansion is divergent for (T /q A) > 1.

Solies4 has shown how dif� cult it is to calculate the propeller
thrust and in� ow in the general case. Fortunately, a lower
limit for d is easily obtained for light airplanes by noting that
T =CDqS + W sin h , while W cos h =L =CLq S ¼ W for steady
� ight, either level or at the small climb angles of h of most light
airplanes. In this case a satisfactory lower limit for d is given by

d ¸ 1
2

h
¡ 1 +

q
1 +

¡
CD S ê p r 2

0

¢i
(2)

More important than any variation in d is the determination of the
bladeangle b that would producea constantangleof attack a ¤ along
most of the propeller blade at the cruising speed of a light airplane
with a � xed-pitchpropeller. a ¤ designatesthe airfoil pro� le angleof
attack that produces its maximum L/D ratio. The simplest relation
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Table 1 Values of C2 and Á3/4 for selected � ight speeds Vp and r0 = 0.914 m (31 ft)

Vp , m/s (CL / CD ) d , Eq. (2) C2(Vp / x p)a u 3/ 4 ,b deg C1
c ( a m / v m )d u 3/ 4,e deg ( a m / v m )d

Vmp (29.0) (1.24/0.12) 0.140 0.1280 9.69 0.2106 (14.1 deg/0.16) 14.36 (10.6 deg/0.23)
V¤ (38.2) (0.714/0.06) 0.074 0.1587 11.95 0.2430 (12.1 deg/0.20) 17.61 (9.1 deg/0.28)
VC (56.0) (0.332/0.037) 0.046 0.2266 16.81 0.3155 (9.4 deg/0.27) 24.38 (7.4 deg/0.39)
VM (69.5) (0.216/0.033) 0.042 0.2802 20.49 0.3737 (8.2 deg/0.32) 29.27 (6.7 deg/0.47)

aC2 (Vp / x p ) =(1 + d p )Vp / r0 x p ; x p = (2700/60)2 p . b u 3/ 4 = tan ¡ 1 (C2 /0.75). cEquation (3), b 3/ 4 = u 3 / 4 + 6 deg. dEquation (5).
etan ¡ 1(1.5C2 /0.75); x p = (1800/60)2 p .

Fig. 1 Tan Á ¼ (1 + ±)V/Âr0! = C2/Â. When ¯ ¤ = Á ¼ tan ¡ 1(C2/Â),
then ® = ®¤ . When ¡ ®f (L = 0) = ®¤ , then ¯ ¤ = ¯f = Á, and ®f = 0.

for b is given by the constant-pitch ratio de� ned by the pitch p and
the blade-tip radius r0 as

p / 2 p r0 = v tan b v = const = C1

where v =r / r0 ·1. However, when b is measured from the zero-
lift reference line (Fig. 1), then b v = ( u v + a ¤ ) = tan ¡ 1(C1 / v ). Be-
cause both b and u vary similarly with v , a ¤ is approximatelycon-
stant (5 deg < a ¤ < 6 deg) for most useful airfoils; therefore,as will
be shown by Eqs. (3) and (4), a v = ( b v ¡ u v ) increases from the
propeller tip ( v =1) to a maximum a m at v m near the propeller
hub. To reduce this increase in a v as v decreases, the highly cam-
bered � at bottom Clark-Y and RAF-6 pro� les were developed so
that (see Fig. 1) j a f (L =0) j =5 deg ¼ a ¤ . Then when a f =0 and
b f measured from the � at lower surface,

b f = u , b = ( b f + 5 deg)

a = ( b ¡ u ) = j a f (L = 0) = 5 deg ¼ a ¤

p/ 2 p r0 = v tan b f, v = v tan u v = C2

This could be the ideal solution if all of the propeller sections had
a 12% thick Clark-Y pro� le having j a f (L =0) j =5 deg ¼ a ¤ =
5.3 deg; unfortunately structural demands require that blade thick-
ness decreases from hub to tip. Although a ¤ is relatively unaf-
fected by thickness, (5 deg · a ¤ < 6 deg) for most useful pro� les,
j a f (L =0) j decreases with thickness ratio j a f (L =0) j ¼ 44(t / c).
For example, a 6% Clark-Y airfoil has j a f (L =0) j ¼ 3 deg <
a ¤ ¼ 5 deg. Therefore,the presentdiscussionindicateshow the pitch
ratio must be modi� ed to reduce this increase in a v as v decreases.

II. Fixed-Pitch Propeller with Constant Pitch
A constant geometric pitch p is de� ned for v =r / r0 ,

p / 2p r0 = ( v tan b v ) = C1 =
±

3
4 tan b 3

4

²
(3)

The usual notation rated pitch is for v = 3
4 so that p =

2 p r0( 3
4 tan b 3/ 4) is marked on the propellerhub, along with the pro-

peller diameter (2r0). When the blade angles b are measured from
the zero-lift reference line (Fig. 1, a =0) and Eq. (3) is de� ned by
b 3/ 4 = u 3/4 + a 3/ 4, then the blade angles of attack a v will not be
constant along the blade, as shown by von Mises1 (p. 292). The

Fig. 2 Variation of D ®(kVc ) with Â = r/r0. From Eqs. (8) and (10) and
®(Vc ) from Eq. (4) with Vc = 125 mph (59 m/s), C2(Vc ) = 0.2266, and
C1 = 0.3155 for ¯3/4 = Á3/4 + 6 deg.

variation of the angle of attack along the blade 0.15 < v =r / r0 ·1
is given by (see Fig. 1 and dotted line in Fig. 2)

a v = b v ¡ u v = tan ¡ 1 C1

v
¡ tan ¡ 1 C2

v
= tan ¡ 1

³
v (C1 ¡ C2)
v 2 + C1C2

´

(4)

Consequently a v increasesas v decreases to v m · v ·1 so that the
maximum a m is

a m = tan ¡ 1[(C1 ¡ C2) / 2v m ], v m = (C1C2)
1
2 (5)

For v < v m , a v decreases to zero because tan a v ! v (1/ C2 ¡
1/ C1) ! 0 as v ! 0.

The numericalvalues in Table 1 were calculatedfor a typical light
airplane, similar to a Piper PA-22 or a Cessna 170. The drag polar
approximation was given by

CD = CDe + C2
L
ê p Ae = 0.03 + C2

L
ê 17

CL ¤ =
¡
p AeCDe

¢ 1
2 = 0.714, CD ¤ = 2CDe = 0.06

CLm p = 3
1
2 CL ¤ = 1.24, CDm p = 2CD ¤ = 0.12

The velocity V¤ for the maximum L/D ratio, and Vmp for the min-
imum power required for steady level � ight, were then calculated
by

V = (2W / q SCL )
1
2 , W = 907 kg (2000lb)

S = 13.9 m2 (150 ft2), q = 1.225 kg/m3 (0.002377lb s2/ft4)

The constant C2 =(1 + d )V / (r0 x ) was calculated for r0 =0.914 m
(3 ft) and x =90p (2700rpm). For x =60 p (1800 rpm) the constant
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C2 in Table 1 was simply increased by a factor of 1.5. The constant
C1 = 3

4 tan( u 3/ 4 + 6 deg) in Table 1 was calculatedfor a 3/ 4 =6 deg,
measured from the zero-lift reference line to be compared with the
calculations given by von Mises.1

The cruise speed VC in Table 1 was selected as the advertised
125 mph (56 m/s) cruise speed of the Piper PA-22. The maximum
speed VM could only be attained with a variable pitch propeller, but
is given to show how the maximum a m decreases with increasing
speed. At lower speeds the increasein angle of attack as v decreases
can become too large when a 3/ 4 =6 deg is measured from the zero-
lift reference line. For example, at Vmp =29 m/s, a m =14.1 deg at
v m =0.164, whereas at VC (56 m/s), a m has decreased to 9.43 deg
and moved outward to v m =0.267 so that the blade angle of attack
has decreased to 8.07 deg at the propeller hub ( v =0.15).

The excessive increase in a can be easily avoided by measuring
b from a reference line below that for zero lift, as indicated in
Fig. 1. For example, the 12% Clark-Y has a � at lower surface so
bladeangles ( b f, v ) measuredfrom its bottomsurface can be de� ned
as b f, v =( b v ¡ 5 deg) (see Ref. 1, p. 160), while a ¤ ¼ 5.3 deg;
therefore, b f, 3/ 4 =( u 3/ 4 + 0.3 deg) would correspond to the blade
pro� le’s maximum ratio of L/D. The best procedure is to neglect
the 0.3 deg and use b f , v = u v and C1 = 3

4 tan( u 3/ 4) = v tan u v for a
rede� ned constant pitch given by

p = 2p r0( v tan u v ) = 2 p r0C2(Vp / x p) = 2 p r0 v (tan b f ,x )

Consequently for the Clark-Y pro� le shown in von Mises1 (p. 160),
a v =( a f , v + 5 deg), and CL ¤ / CD ¤ ¼ 22 for ¡ 2 deg < a f, v < 3 deg
or (3 deg < a v < 8 deg). The aerodynamicangle of attack (5 deg) is
constant along the blade portion that has the Clark-Y pro� le at the
design advance ratio given by C2(Vp / x p ) = p/ 2 p r0 , when a f =0.
Unfortunately the 5-deg zero-lift angle decreases as the 12% thick-
ness decreases, becoming only 3 deg for 6% thickness so that a
would decrease at the thinner outboard sections unless b f, v was
increased by a f , v (see Fig. 1), where 0 · a f, v ·2 deg.

III. Fixed-Pitch Propeller with Constant ®

As noted by von Mises,1 a � xed-pitch propeller that has b v for
the constant pitch de� ned by Eq. (3) with b v > u v cannot have
a constant angle of attack. This is clearly shown by Eq. (4) be-
cause a varies with v =r / r0 whenever C1 > C2 . However, when
C1(Vp / x p ) =C2(V0 / x 0), then a v =0, and ( p / 2 p r0) =(V0 / r0 x 0),
with d =0 = a when b v and a ¤ are measured from the zero-lift
reference line. The � xed-blade angles necessary for a constant
a v = a ¤ (the maximum L/D ratio for the blade pro� le) are given
by C ¤ = tan a ¤ so that

b v = a ¤ + u v = tan ¡ 1 C ¤ + tan ¡ 1(C2 / v ) = tan ¡ 1

³
C ¤ + C2 / v

1 ¡ C ¤ C2 / v

´

C ¤ C2 < v = (r / r0) · 1

( pv /2 p r0) = v tan b v = v

³
C ¤ + C2 / v

1 ¡ C ¤ C2 / v

´
(6)

Consequently the varying pitch (pv ) decreases with v until a mini-
mum is attained at v p , which is evaluated by (dp v / d v ) =0 as

v p = C ¤ C2

h
1 +

¡
1 + C ¡ 2

¤

¢ 1
2

i
= 1.11C2 for (C ¤ = tan 6 deg)

This variation of pv is con� rmed by von Mises1 (Fig. 220, p. 292)
if J / p is replaced by C2 with d =0, which is adequate for higher
velocities and lower CD than those presented in Table 1. Note that
the d values given by Eq. (2) are only lower limit estimates.

The variation in p v decreasesas the reference line for b is moved
downward below the zero-lift line. A constant pitch p =2p r0C2 is

attained when the blade pitch angle b ¤ , v = u v , as shown in Fig. 1.
Then with a v = a ¤ =constant,

b ¤ , v = b v ¡ a ¤ = u v = tan ¡ 1(C2 / v )

b v = b ¤ , v + a ¤ = a ¤ + u v (7)

This agrees with Eq. (6), except that the measured pitch is now con-
stant because p /2 p r0 = v tan u v =C2. The constant a v = a ¤ could
be produced from the propeller hub ( v =0.15) to its tip ( v =1) as
long as the advance ratio C2(Vp / x p ) =constant. Any change in V
or x will vary a v along with the blade, as shown by

a v (V / x ) ¡ a ¤ = u v (Vp / x p) ¡ u v (V / x ) = tan ¡ 1 C2(Vp / x p )
v

¡ tan ¡ 1 C2(V / x )
v

= tan ¡ 1

»
v [C2(Vp / x p) ¡ C2(V / x )]
v 2 + C2(Vp / x p)C2(V / x )

¼

= D a v (8)

Obviously, a v decreasesas eitherV increasesor x decreasesand re-
mainsconstant( a ¤ ) only if theadvanceratio,de� ned by C2(Vp / x p),
remains constant.

The maximum change in [a v (V / x ) ¡ a ¤ ] = D a v , given by
(d D a /d v ) =0, is

tan ¡ 1

³
C2(Vp / x p ) ¡ C2(V / x )

2 v m

´

v m = [C2(Vp / x p)C2(V / x )]
1
2 (9)

Substituting k =C2(V / x ) / C2(Vp / x p ) into Eq. (9) simpli� es it to

D a m (kVp ) = tan ¡ 1
£
(1 ¡ k) /2

p
k
¤
, v m =

p
kC2(Vp / x p )

(10)

The values for D a (kVC ) shown in Fig. 2 were calculatedby Eqs. (8)
and (10) for velocity changes from an initial advance ratio given in
Table 1 by C2(VC / x C ) =0.2266, correspondingto VC =56 m/s and
x C =90 p (2700 rpm) so that k =(1 + d )V /58.6 m/s. The effect of
any changes in rpm can be calculatedby simply changing the value
of C2 by the ratio (2700/rpm). Figure 2 shows how quickly the blade
angles of attack can be increased by a decrease in velocity. For ex-
ample, the decrease in velocity from VC =56 m/s to Vmp =29 m/s
(kmp =0.565) produces D a 0.4 = 12 deg so that a 0.4(VC ) has in-
creased from a ¤ =6 deg to a 0.4(Vmp) =18 deg. This would corre-
spond to a decrease in the L / D ratio of a typical Clark-Y pro� le
by more than 50%. On the other hand, an increase in velocity to
Vm =69.5m/s (km =1.24) produces a v (Vm ) ¼ 0 for0.2 · v ·0.35,
when the initial a v (VC ) =6 deg. This shows why a variable-pitch
propeller is necessary for both a desirable speed range and a rea-
sonable takeoff distance.

However the best compromise for a constant-pitch propeller for
a light airplane has a blade pro� le that has a � at lower surface and
a large camber. The � at bottom is suitable for verifying the blade-
pitch angles with a propeller-protractor, and the high camber can
lead to ¡ a f (L =0) ¼ a ¤ ¼ 5 deg, where the angle a f is measured
from the � at bottom [see Fig. 1 ( a = a f + 5 deg)]. Both the Clark-Y
and the RAF-6 pro� les are near to this ideal condition.For example,
a 12% Clark-Y pro� le (Ref. 1, p. 160) has a =5 deg ¼ a ¤ =5.3 deg
when a f =0. Consequently the optimum a ¤ ¼ 5 deg is closely ap-
proximated by

b v = u v + 5 deg = b f , v + 5 deg, a v = a f, v + 5 deg

b f, v = u v = tan ¡ 1(C2 / v ), p/ 2 p r0 = C2 = v tan u v (11)

This is the ideal solution if the blade thickness remained 12%;
however, structural requirementsneed a decrease in thickness from
hub to tip. Consequentlythe outboard pro� les must increase b f, v to
compensate for the decrease in ¡ a f (L =0).
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IV. Discussion
The D a fromEqs. (8) and (10) andFig. 2 canalsobe appliedto the

constant-pitch propeller de� ned by Eq. (3) with b 3/ 4 = u 3/4 + a 3/ 4

because

D a v (kVC ) = u v (VC ) ¡ u v (kVC )

a v (kVC ) = b v (VC ) ¡ u v (kVC ) = a v (VC ) + D a v (kVC )

The variationof a v (VC ) = b v (VC ) ¡ u v (VC ) is shown by the dotted
line in Fig. 2 for C1(VC ) =0.3155 from Table 1 for a 3/ 4 =6 deg at
2700 rpm. Now the angle of attack a v (kVC ) is increasinglygreater
for v < 3

4 as the velocitydecreases;however, an increasein velocity
(k > 1) decreases a v (kVC ) so as to make it more nearly constant.
Unfortunatelyit doesnotbecomeconstantuntil a v (k0VC ) =0, when

b v (VC ) = u v (k0VC ), C1(VC ) = C2(k0VC ) = k0Vc / r0 x 0

because a =0 = d 0. Equation (9) gives the maximum value of
a v (kVC ) only when a v (VC ) is constant. When it varies, then
a m(kVC ) is given by Eq. (5) at a larger value of v m .

So far all calculations (except those in Table 1 for x =60 p =
1800 rpm) have been based on 2700 rpm. Now it will be shown how
a variation in rpm while changing velocity can extend the range of
constant angle of attack for any � xed-pitch propeller. For example,
the increase in D a shown in Fig. 2 for k =0.9 can be eliminated by
decreasing the rpm from 2700 to 2430 rpm because d < 0.05 can be
considered constant:

C2(VC / x C ) = C2(kVC / k x C ) = 0.2266, D a v = 0

However the decrease in D a for k =1.1 cannot be eliminated
by increasing the rpm, which must be limited to 2700 rpm
for continuous operation so that the pitch ratio for the con-
stant a (VC ) = a ¤ propeller, p /2 p r0 =C2(VC / x C ) =0.2266, must
be increased. To assist the average light plane owner, se-
lect the appropriate propeller pitch and consider the applica-
tion to a desired cruise speed VC =125 mph to be compatible
with Vm =135 mph. Then Vm / VC =1.08 =2700 rpm/2500 rpm,
and a (VC ) = a (1.08VC ) = a ¤ for maximum blade L/D ratio if
x C =(90p /1.08) =2500 rpm, so that

C2(125/2500) = C2(135/ 2700) = 1.08(0.2266) = 0.2447

p = 2 p r0C2(125/ 2500) = 55.36 in. = 72 in. p (0.2447)

b f, 3
4

= u 3
4

= tan ¡ 1(0.2447/0.75) = 18.07deg

From Table 1 note that originally u 3/ 4 =16.81 deg for C2(VC /
x C ) =0.2266 =C2(125 mph/2700 rpm) so that originally p =
72 in. p (0.2266) =51.26 in. = (55.36 in./ 1.08). The change in d is
negligible for this relatively small velocity increase from 125 mph
(56 m/s). The older U.S. light airplanes in operation today record
their air speed in miles per hour, but the more recent ones are oper-
ating in knots. Table 1 is based on meters per second (m/s) as given
by

(m/s) = (ft/s) £ 0.3048 = (mph) £ 0.44704 = (kn) £ 0.51444

= (km/hr) ¥ 3.6

The lower limit for d , as given by Eq. (2), is d < 0.1 for
(CD S / p r 2

0 ) < 0.44. For Table 1 this corresponds to V > 33 m/s
(73.8 mph). However for lower velocities the estimation of d be-
comes dif� cult, as shown by Solies4 who calculated d =0.57 at
50 kn (25.7 m/s) for a propeller with 2.08 m (6.83-ft) diameter de-
veloping 508 kg (1120 lb) of thrust at 2700 rpm. Consequently the
estimates for d in Table 1 when V < 33 m/s could be in the range
given by

(T /4q A) ¡ (T /4q A)2 < d < 1
2

The d values in Table 1 were calculated by Eq. (2), which is not
applicable for lower velocities because (T /q A) > (CD S / q A).

To estimate the range of the blade angle b f ,3/ 4 that would corre-
spond to the estimated range of d , consider the lowest velocity in
Table 1:

Vmp =29 m/s, d =0.14 [fromEq. (2) with CD =0.12]

C2 = 0.128, u 3
4

= tan ¡ 1(0.128/ 0.75) = 9.7 deg

The method of Solies4 gives d =0.37 (a 264% increase) so that
1.14 < (1 + d ) ·(1.37) and k ·(1.37/ 1.14) =1.20. Then with the
Clark-Y pro� le (Ref. 1, p. 160), j a f (L =0) j =5 deg ¼ a ¤ , and
a v (kC2) =5 deg when a f =0 and u (kC2) = b f in Fig. 1. If d =
0.14, then a v (0.128) = 5 deg when b f,3/ 4 = u 3/4(0.128) =9.7 deg;
however, if d =0.37 and k =1.2, then a v (0.154) =5 deg if
b f,3/4 = u 3/4(0.154) =tan ¡ 1(0.154/0.75) =11.6 deg. In this case
the � xed-pitch propeller for climb at Vmp =29 m/s can be de� ned
by

0.128 < (C2 = p /2 p r0) < 1.2(0.128) = 0.154

9.7 deg <
±

b f, 3
4

= u 3
4

²
< 11.6 deg

In many cases the actual pro� le used has

j a f (L = 0) j ¼ 4 deg, a ¤ < 6 deg

So the usual procedure is to de� ne the blade angle by

b f , 3
4

= u 3
4
(C2) + a f, 3

4
with a f, 3

4
¼ 2 deg

In this case a v (C2) cannot be constant if the pitch is de� ned by
Eq. (3), as shown by Eqs. (4) and (6), because a v can be constant
only when u (C2) coincides with the reference line used to de� ne
the blade angle (e.g., Fig. 1, u = b ¤ for a ¤ =const). When b f is
measured from the � at lower surface ( a f =0), then a v (kC2) is
constant for kC2 > C2 so that

u 3
4
(kC2) = b f , 3

4
= u 3

4
(C2) + 2 deg

k = tan u (kC2) / tan u (C2)

a (kC2) = b f, v + j a f (L = 0) j ¡ u v (kC2) = j a f (L = 0) j (12)

The variation of a (C2) is given by Eq. (8) as

¡ D a v (kC2) = u v (kC2) ¡ u v (C2) = tan ¡ 1

"
v (k ¡ 1)C2

v 2 + kC 2
2

#
(13)

For k < 1 a v (C2) increasesas v decreases to v m de� ned by Eq. (10)
for maximum a m .

The precedingcalculationsfor Vmp =29 m/s gaveC2 =0.128 and
u 3/ 4(0.128) =9.7 deg. Then u 3/ 4(kC2) =(9.7 deg + 2 deg) = b f ,3/ 4

so that k =(tan 11.7 deg/ tan 9.7 deg) =1.212; consequently if
j a f (L =0) j =4 deg, then Eq. (13) gives the following a v (0.128)
values:

a 1 = 5.5 deg, a 3
4

= 6 deg = a ¤

a m = 9.5 deg( v m = 0.141)

Although a v (0.128) is not constant, it may be useful because it be-
comes more uniform as C2 increases to kC2 =1.212(0.128) when
a v (0.155) = j a f (L =0) j =4 deg. This constant a v occurs at a ve-
locity that is more than 21% greater than the original velocity
(29 m/s), as given by

V = 1.212[1.14/ (1 + d )](rpm/ 2700)(29) > 35 m/s

because d decreases and rpm increases, as V increases.
The d values used have a large effect on b , but a very small

effect on the variation of a v (C2), as can be shown by replacing
the lower limit d =0.14 and C2 =0.128 by the upper limit
d =0.37 and C2 =0.154, corresponding to u 3/ 4(0.154) =11.6 deg
so that for this application b f,3/4 = u 3/ 4 + 2 deg =13.6 deg and
k = (tan13.6 deg) / (tan 11.6 deg) =1.179. This value of k less than
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3% lower than k =1.212 for d =0.14. As expected, Eq. (13)
gives a 3/ 4 =6 deg in both cases, but k =1.179(C2 =0.154)
gives a m =8.7 deg( v m =0.167), which is only 0.8 deg less than
a m =9.5 deg( v m =0.141) for d =0.14. Consequently, the main ef-
fect of 0.14 < d < 0.37 is the 1.9 deg increase in b f, 3/ 4 from 9.7 to
11.6 deg in order to match the increase in the in� ow velocity ( d V ) at
V =29 m/s, with constant a v =4 deg occuringat V ¼ 354 m/s. The
bestadjustmentfor theestimatedvariationsin either d or j a f (L =0) j
is to use 1.2C2 rather than b f ,3/ 4 = u 3/ 4 + 2 deg for this partic-
ular case. Although a ¤ can increase to 6 deg for other pro� les,
j a f (L =0) j can be reduced to 3 deg by thinner Clark-Y pro� les
having approximately 6% thickness, as indicated by McCormick3

(p. 356). In this case a v is not constant if the constant pitch is based
on b f = u , because a 3/ 4 = b f ,3/ 4 + 5 deg ¡ u 3/ 4 and at the propeller
tip ( v =1), a 1 = b f ,1 + 3 deg ¡ u 1. Consequentlythe outboardpro-
� les must have their blade angles b f , v increased with respect to u v

so b f , v = u v + a f, v , as shown in Fig. 1, with a f,1 =2 deg, to have
a v ¼ 5 deg. To accommodate the thinner pro� les, most variable-
pitch propellers refer to the blade angles as b from zero lift (see
Fig. 1) so that as the blades are rotated to increase b for faster � ight
speeds, the resulting a v are approximately constant (von Mises,1

Fig. 221, p. 293).
A constant a v = a ¤ for the maximum L/D ratio is an obvious

goal because it maximizes the thrust-to-torqueratio. Unfortunately
the bending and tension stresses produced in � ight require such
a thickening of the inboard blade pro� les that their L/D ratios are
greatly reduced. In addition,during the takeoff run u is so small that
a ¼ b = b f + j a f (L =0) j produces blade stall with further reduc-
tion in the L/D ratio for v < 1

2 . Consequently most commercially
produced � xed-pitch propellers gradually reduce the constant pitch
for v < 0.7. Some variable-pitchpropellers have constant pitch for
v > 0.35. For example,McCormick3 (Fig. 6.11, p. 355) shows pitch
p variation with v for a 10-ft diameter, three-blade propeller with
Clark-Y pro� les, and ( p / 2p r0) = 3

4 tan 15 deg =0.201 for 0.35 <
v ·1. This is reduced 36% to ( p /2 p r0) =0.148 at v =0.2, where
b 0.2 = tan ¡ 1(0.148/0.2) =36.5 deg, which is 8.6 deg less than
b 0.2 = tan ¡ 1(0.201/0.2) =45.1 deg for the original constant pitch.
The majority of the replacement propellers for U.S. light airplanes
are manufacturedby theMcCauleyIndustrialCorp., Vandalia,Ohio.
They provide � xed-pitch metal propellers that have their diameter
(2r0) and pitch (p =2 p r0 £ 0.75 £ tan b f ,3/ 4 ) stamped on their hub
in inches (0.0254 m =1 in.). Suitable for the light airplane de� ned
by Table 1, they produce72-in. diameter propellerswith � xed-pitch
ranging from 46 to 58 in. at 2-in. intervals. Each 2-in. increase in
pitch increases D b f,3/ 4 ¼ 0.6 deg. This corresponds to an increase
of D Vp ¼ 5 mph. The design Vp for the best cruise speedscould then
be approximately110 mph for p =46 in., 125 mph for p =52 in., or
140 mph for p =58 in. These McCauley propellershave slightly in-
creasingpitch for v > 3

4 , and then a rapidly decreasingpitch toward
the hub so that at v = 1

3 the blade angles b f (see Fig. 1) are 5–7 deg
less than the correspondingvaluesgivenby v tan b f , v = 3

4 tan b f, 3/ 4.
Then near the hub ( v · 1

4 ) b f is kept constant, whereas the calcu-
lated valuesgivenby b f , v = tan ¡ 1( p3/ 4in. /2 p r in.) rapidly increase
because b f ! 90 deg as r in. ! 0. This decrease in b f , v for v < 3

4
was developedby McCauley’s engineers to increase the static thrust
and alleviate the high angle-of-attackairfoil pro� le stall that occurs
as V decreases.As shown by Eq. (8) and Fig. 2, any decrease in ve-
locity produces an undesirable increase in a v for the inboard blade
pro� les (0.2 < v < 0.6).

If the propeller selection is based on a design Vp ¸ 125 mph, then
the in� ow velocity can be neglected ( d < 0.046). However d should
be considered for the low-speed ultralight airplane, and especially
for theman-poweredaircraft.For the lattercase it is betterto evaluate
both the axial and radial in� ow and evaluate b v from the zero-lift
reference. For a � rst approximationEq. (6) would indicate how the
pitch would vary to produce a v ¼ a ¤ . However these calculations
would be too expensive for the home-built airplane designer so that
their simplest procedure would be to estimate the axial in� ow by
(CD S / 4p r 2

0 ) < d < 1
2
, and then use the constant pitch de� ned by

p /2 p r0 = 3
4

tan b f, 3
4

= v tan b f, v , b f, 3
4

= u 3
4

+ D a f, 3
4

(14)

where b f is measured from the � at lower surface of a typical Clark-
Y airfoil. For example, D a f ,3/ 4 =2 deg would produce a v ¼ a ¤ for
v > 0.6 if the Clark-Y thickness ratio was 10% at v = 3

4
and 6%

at v =1. In addition D a f ,3/ 4 =2 deg would reduce the undesirable
increase in a v , which is shown in Fig. 2 for b 3/ 4 = u 3/ 4 + 6 deg. The
amateur propeller builders should refrain from reducing the pitch
for v < 0.6 because they would lose the simplicity of graphically
determining the blade angles by drawing the straight line given by
tan b f, v =( p / 2p r0)/ v . The McCauley � xed-pitch propellers de-
creased the pitch following many tests to increase the thrust as the
velocity decreases. As a result, they provide a table with each pro-
peller that gives the blade angle (b f , v ) every 3 in. from hub to
propeller tip (r0 in.). Another objective in the McCauley propeller
tests was to increase the static thrust, which is important for the
takeoff run. If the propellerpitch is selected too large in the hope of
achieving a higher Vmax, then a v during the takeoff run may be so
large that the propellersL / D ratio is too small to achievea relatively
� nite takeoff distance!

V. Conclusions
The design goal for either a � xed-pitch or a controllable-pitch

propeller is to have most of the blade for v > 1
4 at each pro� les

angle of attack a = a ¤ for its maximum L/D ratio. This could be
achieved for the design advance ratio C2(Vp / x p ) by using Eq. (6) to
determinethebladeangles b v (measuredfrom thezero lift line). The
required pitch (p v ) decreases from v =1 to v p ¼ 1.11C2 (Vp / x p ),
and then increases rapidly; therefore, p v = pp for v < v p is the best
choice since the required blade thickness had greatly reduced the
L/D ratio. Then the decrease in a v that would decrease thrust as V
increases, and the increase in a x that could decrease the L/D ratio
of the pro� les when a v ! b v as V decreases, must be checked for
the expected VMAX and the thrust required for the take-off run. The
change in a v producedby any change in V or x , for any � xed b v and
its corresponding a v at the design C2(Vp / x p ), is given by Eqs. (10)
and (13), for C2(kVp / x p ), where k =(V x p / Vp x )[(1 + d ) / (1+ d p )];
the change in d can usually be neglected if V > 40 m/s.

However, the best propeller for light airplanes uses airfoil pro-
� les that have a � at lower surface, such as the Clark-Y airfoil. The
� at bottom provides an excellent surface for a propeller protractor
to check the blade angle b f , thereby eliminating the dif� culty of
measuring b from the zero lift reference line (Fig. 1). In addition,
the 12% Clark-Y pro� le’s camber was designed so that a f =0 in
Fig. 1, gave

¡ a f (L = 0) = 5deg ¼ a ¤ , b f = u

a = a f + j (L = 0) j = 5deg (15)

Now b f , v is de� ned by Eq. (11) as tan b f , v = (C2 / v ), consequently
b f, v is easily calculated, or measured by the angle formed by a
straight line graph given by r / r0 vs C2 =constant. For a low-
speed ultralight airplane this would be the ideal solution, with
(t / c) =0.12 for v > 1

4
; however, structural demands for heavier

aircraft require a continual decrease in (t / c) for v > 1
4 . Because

j a f (L = 0) j ¼ 44(t / c) decreases,while a ¤ ¸ 5deg is approximately
constant, the usual remedy is to increase b f,3/4 , as in Eq. (14) with
D a f, 3/ 4 =( b f ,3/ 4 ¡ u 3/ 4) = a f,3/ 4 (in Fig. 1).

For example, Table 1 gives C2(Vc / x c) =0.2266 and u 3/ 4 =
16.81deg when Vc =56 m/s (125 mph). Then D a f ,3/ 4 =1.6deg and
Eq. (14) give,

v tan b f, v = 3
4 tan b f, 3

4
= 3

4 tan(16.81 + 1.6) =0.2496

a f , v = b f , v ¡ u v = tan ¡ 1(0.2496/ v ) ¡ tan ¡ 1(0.2266/ v )

a f,1 =1.25deg, a f, 3
4

=1.6deg

a f , 1
2

=2.15deg , a f , 1
4

=2.77deg

Consequently for v , > 1
4 , ¡ a f (L =0) ¼ 3deg would produce a v ¼

5deg ¼ a ¤ . However a much simpler method is indicated by Fig. 2
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where D a 3/ 4 =1.6deg for C2 =0.2266 and k =0.9 from Eq. (13).
Consequentlyif b f , v is evaluatedat a highervelocitygivenby 1.1 Vc

with x c constant, then Eq. (13) gives the increase in D a f, v when
b f, v (1.1Vc / x c) operates at the original (Vc / x c ) with k =(1.1) ¡ 1

and C2(1.1Vc / x c) =1.1 (0.2266) =0.2493 therefore,

a f, v (Vc / x c) = tan ¡ 1

³
v (1 ¡ k)(0.2493)
v 2 + k(0.2493)2

´
with k =

³
1

1.1

´

a f ,1 =1.23deg, a f, 3
4

=1.57deg

a f , 1
2

=2.12deg, a f, 1
4

=2.73deg

The � xed blade angles are given by,

b f , v = u v (1.1Vc / x c) = tan ¡ 1(0.2493/ v )

a f, v (1.1Vc / x c) = 0 (16)

Therefore either method is satisfactory, but Eq. (13) with k =1.1–

1.2 is the simplest method for determining the b f, v = u v (kVc / x c)
so that a f , v (kVc / x c) =0 and at the design cruise speed (56 m/s)
a v (Vc / x c) ¼ a ¤ . Consequentlyin a steadyshallowdivewhere V has

increased more than, x , so that (V / x ) =k(Vc / x c), the interesting
experimental situation can occur where,

a f , v (kVc / x c) = 0, a v (kVc / x c) = j a f, v (L = 0) j ¼ 44(t / c) v

(17)

The required increase in blade setting for the maximum veloc-
ity (VM ) of a controllable-pitch propeller is also best determined
by Eq. (13) because it gives D a v (VM / x M ) for any change in
k = (V x p / Vp x ) for anygiven b v (Vp / x p), measuredfromany � xed
reference line (Fig. 1) because

¡ D a v (kC2) = u v (kC2) ¡ u v (C2) = tan ¡ 1

³
v (k ¡ 1)C2

v 2 + kC2
2

´
(18)
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